M1.(a) 13 (protons)
The answers must be in the correct order.
if no other marks awarded, award 1 mark if number of protons and electrons are equal
(b) has three electrons in outer energy level / shell
allow electronic structure is 2.8.3
(c) Level 3 (5-6 marks):

A detailed and coherent comparison is given, which demonstrates a broad knowledge and understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.

Level 2 (3-4 marks):

A description is given which demonstrates a reasonable knowledge and understanding of the key scientific ideas. Comparisons are made but may not be fully articulated and / or precise.

Level 1 (1-2 marks):
Simple statements are made which demonstrate a basic knowledge of some of the relevant ideas. The response may fail to make comparisons between the points raised.

0 marks:

No relevant content.

Indicative content

Physical
Transition elements

- high melting points
- high densities
- strong
- hard

Group 1

- low melting points
- low densities
- soft

Chemical
Transition elements

- low reactivity / react slowly (with water or oxygen)
- used as catalysts
- ions with different charges
- coloured compounds

Group 1

- very reactive / react (quickly) with water / non-metals
- not used as catalysts
- white / colourless compounds
- only forms a +1 ion

M2. (a) (i) UI / solution turns blue / purple allow violet / lilac
any two from:

- floats
- melts / forms a sphere
- moves
note: moves on surface $=\mathbf{2}$ marks (points 1 and 3)
- effervescence / fizz / bubbles / gas
ignore the name of the gas
- (yellow) flame
ignore sparks / ignites / burns
allow dissolves
- reduces in size
ignore 'reacts violently' unqualified
ignore reference to exothermic / heat evolved
(ii) $\mathbf{2 N a}+\mathbf{2} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2 N a O H}+\mathbf{H}_{2}$ correct equation = $\mathbf{2}$ marks
allow correct multiples / fractions
if this equation is unbalanced, allow 1 mark for NaOH
(b)
it = francium
outer electron / shell / energy level must be mentioned once for all 3 marks
biggest atom or (outer) shell / energy level / electron furthest from nucleus or most (number of) shells
least attraction (to nucleus) or most shielding
allow the attraction is very weak
do not allow less magnetic / gravitational attraction
(outer) electron more easily lost / taken
ignore francium reacts more easily / vigorously
(c) any two from:
ignore other properties / specific reactions
they $/$ it $=$ transition elements
transition elements:
allow if state group 1 elements
- high melting point or high boiling point
- low melting point or low boiling point
- high density
- low density
- strong / hard
- weak/soft
- not very reactive
- reactive
- catalysts
- not catalysts
- ions have different charges
- +1 ions
- coloured compounds
- white compounds

M3. (a) colour
(b) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ or $\left(\mathrm{Fe}^{3}\right)_{2}\left(\mathrm{O}^{2}\right)_{3}$

2 and 3 should be below halfway on Fe and O
(c) (i) 44
or correct multiples
(ii) any two from:
ignore references to malleable / ductile / conductivity / stiff / boiling point / density

- high melting point
accept can withstand high temperatures
- strong / tough
accept not brittle
- hard
do not accept flexible
- not (very) reactive
(a) $75 \% \mathrm{Cu}, 25 \% \mathrm{Ni}$
for 1 mark
(b) 70% segment shaded
for 1 mark
(c) (i) copper
for 1 mark
(ii) zinc
for 1 mark
(d) 1. hard so will not wear away/scratch for 1 mark

2. unreactive
so does not corrode/dissolve/or other acceptable reason
(not does not react unless acceptable reason)
(If given hard and unreactive allow 1 mark)
for 1 mark
